University of North Carolina's

Imaging Research Building

Technical Report 2

Daniel R. Hesington, LEED AP Structural Option Consultant- Dr. Thomas Boothby October 5, 2009

Table of Contents

Executive Summary
Introduction4
Architectural Design Concepts4
Structural System5
Foundation5
Superstructure
Lateral System7
Codes and Design Standards9
Loads10
Gravity Loads10
Wind Loads11
Seismic Loads12
Spot Checks15
Conclusion17
Appendix A – Gravity Load Calculations18
Appendix B – Wind Load Calculations29
Appendix C – Seismic Load Calculations27
Appendix D – Spot Checks

Executive Summary

This report was created to be a pro-con study of the existing floor system, and three additional floor systems. Each option was examined using a typical 21'-3" by 31'-4" bay as the basis for analysis. The existing floor system is a 6" one-way cast-in-place slab with #4@12 top and bottom for the typical interior bay. An overview of this system and its advantages and disadvantages are provided in the report.

The three alternate systems that were analyzed were:

- Non-composite steel framing
- Composite steel framing
- Hollow core precast concrete on steel beams

The non-composite steel framing was designed using the AISC 13th edition Steel Construction Manual and the Vulcraft Steel Roof Floor Deck Guide. The design for the typical interior bay was composed of 2C18 metal deck with a 6" slab, W16X31 beams, and W24X76 girders. The composite steel framing was designed using RAM Structural System and Vulcraft 2VL composite deck. It was found that W10X12's with (14) ³/₄" shear studs and a ³/₄" camber would work for the beams, and W21x44's with (50) shear studs a ³/₄" camber would work for the girders. The 4'-0" x 6" hollow core precast plank with 2" topping were selected from the PCI Design Handbook and the supporting girders were determined to be W24X76's when optimized, the same as the non-composite floor system.

The advantages and disadvantages of each of the floor systems were discussed for each framing system, and it was determined that both the non-composite steel framing and the hollow core system were not feasible due to several reasons outlined in the report. However, the composite steel system was determined to be a viable option for future exploration. It's lightweight, not as labor intensive as a cast-in-place concrete slab, and therefore relatively cost effective to construct. The one major disadvantage though is that on the lower levels, stainless steel would need to be used for the framing due to the magnetic interference with the imaging equipment. This problem can be overcome though if a concrete base is used for the subfloors (where the imaging equipment is located), and a steel frame system is used for the floors above.

Chapel Hill, NC

Introduction

This pro-con structural study of alternate floor systems examines the existing floor framing of the University of North Carolina Imaging Research building that was designed by Mulkey Engineers and Consultants, and analyzes three other possible systems. The existing design is a 6" one-way cast-in-place concrete slab while the alternate systems that were studied include non-composite steel framing, hollow core precast planks on steel beams, and a two-way cast-in-place slab. Gravity loads determined in Technical Report 1 were used in the design to help determine slab thicknesses, member sizes and necessary reinforcement. The main focus of this report is compare and contrast the advantages and disadvantages concerning constructability, system depth, system weight, fire protection, cost, and various other criteria to determine which systems may be possible topics for the structural proposal required by Senior Thesis.

The relevant codes used for this analysis are:

Codes & Design Standards

Applied to original design:

2009 North Carolina State Building Code (2006 International Building Code with revisions)

American Concrete Institute (ACI 318-05), Building Code Requirements for Structural Concrete

Substituted for thesis analysis:

American Society for Civil Engineers (ASCE 7-05), Minimum Design Loads for Buildings and Other Structures, 2005

American Concrete Institute (ACI 318-08), Building Code Requirements for Structural Concrete

Material Strength Requirement Summary:

Concrete/Reinforcing Steel (28 day compressive strength)

- Elevated Slabs on Metal Deck: 3500 psi
- Elevated Slabs and Beams: 5000 psi
- Columns, Shear Walls: 7000 psi
- Basement Walls, Site Walls: 7000 psi
- Slab on Grade, Footings, Grade Beams: 4000 psi
- Reinforcement: 60 ksi

Architectural Design Concepts

The Imaging Research Building at UNC Chapel Hill was designed by the architecture firm Perkins + Will. Its primary usage is the driving force behind many of the structural decisions for the project. Once it is open, it will contain the most advanced imaging equipment in any one spot in the world. First, the two subgrade floors house several heavy pieces of imaging research equipment that have large Gaussian fields. Because of this, foundations, walls, and slabs were made thicker than usual, which will result in the use of mass concrete pouring techniques to be required when constructed. For example, the foundation where a 1.5GHZ NMR machine will sit required a 6' thick mat footing.

Above grade you will find typical bays sizes of 21'-4" by 21'-4", and 21'-4" by 31'-4" driven by the laboratory space requirements on every floor. A bridge also connects the new imaging research facility to existing Lineberger Cancer Center on the second floor. At the eighth floor, a large area houses all of the mechanical equipment with a partial mezzanine at the floor above, which services all of the imaging and laboratory equipment below. These architectural and usage restraints have a generous effect on the structural system as noted below, and hopefully in future technical reports.

Structural System

Foundation

The geotechnical engineering study was performed by Tai and Associates on November 12, 2008. The study indicates that the subsurface materials on the site consist of pavement and topsoil, fill, residual soil, weathered rock, and rock and boulders. Based on this composition, Tai and Associates were confident in giving Mulkey a net allowable bearing pressure of 6000 pounds per square foot to use in their foundation calculations.

Because of this allowable bearing pressure, Mulkey had to be creative with their foundation design. The result is a mixture of spread footings under the columns, and a combination of spread and mat footings under the large imaging research equipment and shear walls. The walls below grade range from 18" to 36" in thickness, and in one location a 36" wall spans both subgrade floors to the first floor unbraced. An example of a typical mat footing can be seen in Figure 1.1. As with the other mat footings, this one is combined and sits under two pieces of large imaging equipment. It is 6'-0" thick and also services a shear wall that steps 6' in elevation. Another area of note in the foundation design is a 6'-0" thick concrete footing which will service a cyclotron, another heavy piece of imaging equipment.

Figure 1.1 – Typical Mat Foundation under Imaging Equipment

Superstructure

The first floor and the floors above to the eighth floor is a 6" one-way cast-in-place slab (NWC) with a compressive strength (f'c) of 5 ksi. The beams on these levels are mostly 18"x20" T-Beams, which change directions at the re-entrant corner where the building changes directions. The girder dimensions vary, but are typically 28"x30".

Most of the columns in the Imaging Research Building are 20"x20" square columns with #3 ties above the first floor, and 24"x24" below grade, with all them having a compressive strength of 7 ksi. The typical frame consists of four bays with three of them being approximately twenty feet in width and the other being thirty feet in width to accommodate the laboratories that occupy these spaces on almost every floor of the building.

For more detail on the superstructure a section of the third floor framing is provided in figure 2.1 for reference.

Figure 1.2 - Third Floor Framing

Chapel Hill, NC

Lateral System

Ordinary reinforced concrete shearwalls are used as the lateral force resisting system in the UNC Imaging Research Building. The largest shearwalls are wrapped around the main elevator and stairwell cores while the other ones encase mechanical closets. Most of the shearwalls exist from the mechanical mezzanine to the foundation with others picking up in between. There are forty-one shearwalls either 12" or 16" thick. Figure 1.3 shows an example of the shearwalls around the main stair and elevator core, while Figure 1.4 is an example of a typical shearwall elevation.

Figure 1.4 - Typical Shearwall Elevation

<u>Loads</u>

Gravity Loads

The determination of gravity loads by Mulkey Engineers and Consultants was done using the 2009 North Carolina State Building Code (2006 International Building Code with Revisions), which adopts ASCE 7-05 for its minimum design loads for buildings. This report also uses ASCE 7-05 as the main reference in accordance with the requirements of AE Senior Thesis. In several places, Mulkey chose to use higher design loads than what was stipulated by the building code. These differences along with the rest of the design loads are noted in the Mulkey column of Table 1, while the code loads are in the ASCE 7-05 column. Calculations of the snow load are provided in Appendix A.

Table 1 -Gravity LoadsDescriptionMulkeyASCE 7-05DEAD (DL)Reinforced Normal Weight Concrete150 pcf150 pcfLIVE (LL)Roof30 psf20 psfOffices50 psf50 psfPublic Areas, Lobbies100 psf100 psfLaboratories100 psf100 psfCorridors, 2nd & Above100 psf100 psfCorridors Ground100 psf100 psfStairs100 psf100 psfStorage125 psf125 psfHeavy File Storage200 psf150 psfLevel B1150 psfN/ASuper USD (SDL)Finishes, MEP, Partitions25 psf25 psfBathroom Terrazo40 psfN/ALobby Terrazo60 psfN/AAttacada300 psfN/AAttacada300 psfN/AAttacada300 psfN/A									
Description	Mulkey	ASCE 7-05							
DEA	AD (DL)								
Table 1 -Gravity LoadsDescriptionMulkeyASCE 7-05DEAD (DL)DEAD (DL)Reinforced Normal Weight Concrete150 pcf150 pcfLIVE (LL)Image: Concrete150 psf20 psfRoof30 psf20 psf50 psfOffices50 psf50 psf50 psfPublic Areas, Lobbies100 psf100 psfLaboratories100 psf100 psfCorridors, 2nd & Above100 psf100 psfCorridors Ground100 psf100 psfStairs100 psf100 psfStairs100 psf100 psfStorage125 psf125 psfHeavy File Storage200 psf250 psfSnow16.5 psf16.5 psfSnow16.5 psf16.5 psfSnow16.5 psf16.5 psfBathroom Terrazo40 psfN/AMER, MEP, Partitions25 psf25 psfBathroom Terrazo40 psfN/AAdoty Terrazo60 psfN/AMEI Room250 psfN/AAttract Courtyard300 psfN/AAttract Cells350 psfN/A									
Reinforced Normal Weight Concrete	150 pcf	150 pcf							
LIV	VE (LL)								
Roof	30 psf	20 psf							
Offices	50 psf	50 psf							
Public Areas, Lobbies	100 psf	100 psf							
Laboratories	100 psf	60 psf							
Corridors, 2nd & Above	100 psf	100 psf							
Corridors Ground	100 psf	100 psf							
Stairs	100 psf	100 psf							
Catwalk	40 psf	40 psf							
Storage	125 psf	125 psf							
Heavy File Storage	200 psf	250 psf							
Mechanical Rooms	150 psf	150 psf							
Level B1	150 psf	N/A							
SN	OW (S)								
Snow	16.5 psf	16.5 psf							
DescriptionMulkeyASCE 7-05DEAD (DL)Reinforced Normal Weight Concrete150 pcf150 pcfIVE (LL)Roof30 psf20 psfOffices50 psf50 psfPublic Areas, Lobbies100 psf100 psfLaboratories100 psf60 psfCorridors, 2nd & Above100 psf100 psfCorridors Ground100 psf100 psfStairs100 psf100 psfStorage125 psf125 psfHeavy File Storage200 psf250 psfMechanical Rooms150 psf150 psfLevel B1150 psf16.5 psfSnow16.5 psf16.5 psfStorago25 psf25 psfShow16.5 psf16.5 psfBathroom Terrazo40 psfN/ALobby Terrazo60 psfN/AMRI Room250 psfN/AAT MRI Room250 psfN/AHot Cells350 psfN/AHot Cells350 psfN/A									
Finishes, MEP, Partitions	25 psf	25 psf							
Bathroom Terrazo	40 psf	N/A							
Lobby Terrazo	60 psf	N/A							
Mechanical Courtyard	300 psf	N/A							
3T MRI Room	250 psf	N/A							
7T Sheilding	75 psf	N/A							
Hot Cells	350 psf	N/A							
Water Tank	350 psf	N/A							

Floor Systems

One-Way Reinforced Cast-In-Place – Existing

Material Properties:

Concrete:	6" slab (NWC)	Dead (self weight):	75 psf
	20"x20" columns	Live:	100 psf
	f'c = 5000 psi	Superimposed:	25 psf
Reinforcement:	fy = 60,000 psi		

J

7'-10"

7'-10"

7'-10"

7'-10"

Κ

31'-4"

28"X30

Description

This one-way reinforced cast-in-place floor system designed by Mulkey Engineering is a 6" NWC slab with ______. The typical interior bay that was considered for this analysis features 18"x20" beams at 7'-10" on center and 28"x30" girders. Because of the size of the floorplan of the building, a detail of the bay analyzed is shown in figure ____.

An analysis for this floor system was done at the _____ floor using RAM Structural System software. Included for this technical report from the RAM output are the stresses and code checks while basic calculations to check minimum thickness for deflection control are done by hand. Both the computer output and hand calculations can be found in Appendix ____.

Advantages

The one-way cast-in-place slab is a simple floor system to design and construct. Therefore, it is relatively inexpensive both in design and construction. Also, it is works for heavier live loads as in the Imaging Research Building because there is very little deflection when used in combination with beams. But more importantly, penetrations in the slab cause few structural problems because there is not a lot of large rebar or tendons running through the slab, and it is easy to reinforce around them after they have been created. This is very important on a job like the Imaging Research Building where there are a number of mechanical systems and equipment lines for the imaging laboratory equipment penetrating through the floors. Therefore, the one-way cast-in-place slab was a logical choice for Mulkey.

8

28"X30"

20"X20" COL. TYP.

Chapel Hill, NC

Loading:

18"X20'

18"X20"

18"X20

18"X20

18"X20'

21'-4"

ONE-WAY SLAB

7

Disadvantages

While there are some obvious advantages that make the one-way floor slab a logical choice for the Imaging Research Building, there are a couple disadvantages to it as well. First, since it is a cast-inplace beam and slab system it's going to require a lot of formwork that will be time consuming and costly. This results in a longer construction schedule which will delay the opening of the building. Also, the one-way floor system is typically a deeper floor system then some of its concrete counterparts. The two-way flat plate, and flat slab systems have a smaller overall depth to them.

Another disadvantage is the quality of concrete work that can be expected. After speaking with several individuals who have years of experience designing structures in the south, I have found that it is common judgment that the quality of concrete placement in the south is inferior to that above the Mason-Dixon Line. While obviously not a make or break factor, it is one that must be considered none-the-less.

Non-Composite deck on steel – Option #1

Material Properties:

Concrete:

Steel: Reinfrocement: Metal Deck: 6" slab (2" deck with 4" of concrete) f'c = 3000 psi fy = 50,000 psi fy = 60,000 psi 2C18 - 3 span

Loading:

Dead (self weight):	75 psf
Live:	100 psf
Superimposed:	25 psf

Description

This non-composite steel system was designed using a typical interior bay of 21'-4" by 31'-4" with beams spaced 7'-10" on center as in the original concrete framing system. With a 3-span condition the Vulcraft 2C18 non-composite deck is able to span 11'-7" during construction, which is greater than the 7'-10" spacing proposed for this framing layout. The 2", 18 gauge deck is also topped with 4" of concrete for a 6" total slab depth. According to the allowable uniform load table in the Vulcraft manual, this system satisfies the system satisfies the bending stress and deflection limit design criteria given.

Calculations for this system were done using the AISC thirteenth edition *Steel Construction Manual* and RISA-3D. The steel manual was used to determine the sizes for the beams and girders and for efficiency of time RISA was used to determine the deflections of the girders to check that they did not exceed the deflection limits.

8 W16X31 J 7'-10" W16X31 DECK 7'-10" W24X76 W24X76 31'-4" W16X31 7'-10" W16X31 7'-10" W16X31 Κ 21'-4"

It was found that that the beams were controlled by the total load deflection of the system, and the girders were controlled by their moment capacity. The calculations supporting these findings can be found in Appendix B.

Advantages

There are several advantages to a steel frame system with a non-composite deck over a cast-in-place concrete slab. First, a steel frame system has a quicker erection time because it can arrive at the site prefabricated and there is no need for formwork. The lack of formwork will also reduce the cost of

Chapel Hill, NC

labor, although this is not as big of deal in North Carolina because it not unionized like it is up North. Another advantage is that it is that decking is able to span 11'-7" during construction; therefore there will be no need for shoring. Finally, although a composite system was not looked at (and there are merits to a composite system), the non-composite system will also save money due to the absence of shear studs.

Disadvantages

The biggest disadvantage to this system in regards to the Imaging Research Building is that on the lower floors where there are a number of pieces of imaging equipment, the steel used would have to be stainless steel. This is due to the fact that the imaging equipment is magnetized and any ferrous material used can disrupt the magnetic field and ruin the equipment. Therefore using a steel frame system for the lower floor would be a large cost increase considering as of September 2009, the North American stainless steel price was 2945 US\$/tonne compared to the carbon steel price of 680 US\$/tonne.

Besides the cost increase for having to use stainless steel on the lower floors, there are several other disadvantages as well. Although probably not likely, one disadvantage could be possible floor vibrations. The reason that this is relatively unlikely though is that there is going to be a lot a heavy equipment used in the building that would act as a natural damper for the system. One problem though that would need to be addressed is the need for additional fire protection to obtain a 2 hour fire rating if a steel frame was used. Finally there is the issue with the existing lateral force resisting system of ordinary reinforced concrete shear walls. If the shear walls are to stay, special connections will need to be designed to frame the two materials together. Otherwise, a steel lateral system will have to be designed.

Feasibility

For the Imaging Research Building, I believe it is a tossup whether or not a steel floor framing system would be a feasible option or not. Perhaps, if a concrete base was used for the two subgrade floors and steel framing was used above, this could be an economical and reasonable option. Further investigation is needed to determine the validity of this argument.

Composite steel framing - Option #2

Material Properties:

Concrete:

Steel: Reinfrocement: Metal Deck: 6" slab (2" deck with 4" of concrete) fc = 3000 psi fy = 50,000 psi fy = 60,000 psi Vulcraft 2VL

Loading:

Dead (self weight):	75 psf
Live:	100 psf
Superimposed:	25 psf

Description

Again the composite steel system was designed using a typical interior bay of 21'-4" by 31'-4" with beams spaced 7'-10" on center as in the original concrete framing system. Contrary to the non-composite framing though

Calculations for this system were done using the AISC thirteenth edition *Steel Construction Manual* and RISA-3D. The steel manual was used to determine the sizes for the beams and girders and for efficiency of time RISA was used to determine the deflections of the girders to check that they did not exceed the deflection limits.

It was found that that the beams were controlled by the total load deflection of the system, and the girders were controlled by their moment capacity. The calculations supporting these findings can be found in Appendix B.

Advantages

There are several advantages to a steel frame system with a non-composite deck over a cast-in-place concrete slab. First, a steel frame system has a quicker erection time because it can arrive at the site prefabricated and there is no need for formwork. The lack of formwork will also reduce the cost of labor, although this is not as big of deal in North Carolina because it not unionized like it is up North. Another advantage is that it is that decking is able to span 11'-7" during construction; therefore there will be no need for shoring. Finally, although a composite system was not looked at (and there are merits to a composite system), the non-composite system will also save money due to the absence of shear studs.

Chapel Hill, NC

Disadvantages

Chapel Hill, NC

The biggest disadvantage to this system in regards to the Imaging Research Building is that on the lower floors where there are a number of pieces of imaging equipment, the steel used would have to be stainless steel. This is due to the fact that the imaging equipment is magnetized and any ferrous material used can disrupt the magnetic field and ruin the equipment. Therefore using a steel frame system for the lower floor would be a large cost increase considering as of September 2009, the North American stainless steel price was 2945 US\$/tonne compared to the carbon steel price of 680 US\$/tonne.

Besides the cost increase for having to use stainless steel on the lower floors, there are several other disadvantages as well. Although probably not likely, one disadvantage could be possible floor vibrations. The reason that this is relatively unlikely though is that there is going to be a lot a heavy equipment used in the building that would act as a natural damper for the system. One problem though that would need to be addressed is the need for additional fire protection to obtain a 2 hour fire rating if a steel frame was used. Finally there is the issue with the existing lateral force resisting system of ordinary reinforced concrete shear walls. If the shear walls are to stay, special connections will need to be designed to frame the two materials together. Otherwise, a steel lateral system will have to be designed.

Feasibility

For the Imaging Research Building, I believe it is a tossup whether or not a steel floor framing system would be a feasible option or not. Perhaps, if a concrete base was used for the two subgrade floors and steel framing was used above, this could be an economical and reasonable option. Further investigation is needed to determine the validity of this argument.

Hollow core precast on steel beams – Option #3

Material Properties:

Concrete:	

4'-0"x6" plank (NWC) 20"x20" columns f'c = 5000 psi fy = 60,000 psi

Reinfrocement:

Description

The hollow core precast concrete system can be used if there is a slight adjustment to all of the bays within the building. Because the precast panels come in 4'-0" wide sections, it seems logical to set the typical interior bay size to 32'x21'-4" as shown in figure _____. Of course, the other bays in the building will also have to be adjusted, but for all intensive purposes of this technical report just the 32'x21'-4" bay was examined.

Using the PCI Design Handbook, a 6" thick plank with 2" topping was chosen for this floor system. The span of 21'-4" was satisfied using 96-S strands within the hollow core panel. In other words, the panel will contain 9 strands a 6/16ths, and that the strands are straight (S). This

a 6" hosen

7

J

floor system is capable of supporting a superimposed service load of 160 psf which is greater than 140 psf which calculated using the 100 psf live load, the 25 psf superimposed dead load, and 15 psf for the 2" topping according to the PCI Design Handbook.

As seen in figure ____, the steel sections that the precast hollow core planks will frame into are W24x76's. This was determined using the AISC 13th edition *Steel Construction Manual*. The calculations supporting these sizes can be found in Appendix ____.

Κ

Advantages

There are a number of advantages to the hollow core precast plank system. First, the system is durable and it is a low maintenance assembly. Not only that, but it takes little time to construct because no curing time is needed. Therefore, construction can be completed quicker than with a

Loading:

W16X31

W16X31

21'-4"

Dead (self weight):	75 psf
Live:	100 psf
Superimposed:	25 psf

8

Chapel Hill, NC

cast-in-place slab which could allow for earlier occupancy. Besides that added construction benefits it also attenuates noise and is a recognized as a LEED rated system.

Disadvantages

In regards to the Imaging Research Building, there are also some disadvantages to using the hollow core precast floor system. The most glaring one would be that the bay sizes would have to be adjusted to accommodate the width of the planks. In turn, this would result in an increase in building footprint that may or may not be acceptable.

Also, again a steel framing system would be used which adds the factor of vibrations. It is unknown at this time the vibration that is associated with this system. Another disadvantage is the added depth to the framing system. Currently, the maximum depth for the bay anaylzed is 30" at the girders. If precast planks were used instead the depth would increase to 31.9". While this isn't a large increase, it is still one that the other trades on the project such as the MEP would have to contend with when trying to design their systems.

Again, as with non-composite floor system there is also a concern with the connections required at the concrete shear walls if that was to remain as the lateral force resisting system. Unless another lateral system was used, these connections could be more time consuming and costly.

Feasibility

This floor system does not seem like a candidate for further investigation. The disadvantages to it outweigh the benefits for its use in the Imaging Research Building.

Chapel Hill, NC

Chapel Hill, NC

Conclusions

After reviewing the advantages and disadvantages of each of the four floor systems is appears that the two-way cast in place slab, and the non-composite steel framing are the most feasible alternate floor framing systems. Both are options that have enough positives to be reviewed further. However, since the non-composite steel framing seems to be a viable option it is decided that a composite steel frame system should also be investigated in the future.

First, there are several benefits to the two-way flat slab that make it a feasible option as an alternate floor system. There is no additional fireproofing required and the layout of the building does not need to change.

UNC-IRB

Appendix A- Gravity Load Calculations

Chapel Hill, NC

Appendix B- Option #1

VULCRAFT

2 C CONFORM

Interlocking side lap is not drawn to show actual detail.

MAXIMUM CONSTRUCTION CLEAR SPANS (S.D.I. CRITERIA)

NON-COMPOSITE

Slab WEIGHT		WEIGHT		NW CONCRETE N=9 145 PCF		WEIGHT	N=14 110 PCF				
Depth	DECK	PSF	1 SPAN	2 SPAN	3 SPAN	PSF	1 SPAN	2 SPAN	3 SPAN		
	2C22	44	6-11	9-0	9-4	34	7-8	9-10	10-2		
4.5	2C20	45	8-2	10-3	10-7	34	9-0	11-3	11-7		
(t=2.50)	2C18	45	10-2	12-4	12-4	35	11-2	13-1	13-1		
A	2C16	46	10-5	12-6	12-11	36	11-7	13-8	13-10		
	2C22	50	6-7	8-7	8-11	39	7-4	9-5	9-9		
5	2C20	51	7-9	9-10	10-2	39	8-7	10-9	11-2		
(t=3.00)	2C18	51	9-7	11-10	11-11	40	10-9	12-9	12-9		
800,000 and 80	2C16	52	9-11	12-0	12-4	40	11-0	13-1	13-5		
	2C22	56	6-4	8-0	8-6	43	7-0	9-1	9-5		
5.5	2C20	57	7-5	9-5	9-9	43	8-3	10-4	10-9		
(t=3.50)	2C18	57	9-2	11-4	11-7	44	10-3	12-5	12-5		
	2C16	58	9-5	11-6	11-10	45	10-6	12-7	13-0		
	2C22	62	6-1	7-5	8-2	48	6-9	8-9	9-1		
6	2C20	63	7-1	9-1	9-4	48	7-11	10-0	10-4		
(t=4.00)	2C18	63	8-10	10-11	11-3	49	9-10	12-0	12-1		
<i>x</i>	2C16	64	9-1	11- 1	11-5	49	10-1	12-2	12-7		
	2C22	68	5-11	6-11	7-11	52	6-6	8-6	8-9		
6.5	2C20	69	6-11	8-9	9-0	53	7-7	9-8	10-0		
(t=4.50)	2C18	69	8-7	10-6	10-11	53	9-6	11-8	11-10		
A	2C16	70	8-10	10-8	11-0	54	9-9	11-10	12-2		
	2C22	74	5-10	6-6	7-5	57	6-4	8-0	8-6		
7	2C20	75	6-9	8-6	8-9	57	7-4	9-5	9-8		
(t=5.00)	2C18	75	8-4	10-2	10-6	58	9-2	11-4	11-7		
1	2C16	76	8-7	10-4	10-8	59	9-5	11-5	11- 10		

REINFORCED CONCRETE SLAB ALLOWABLE LOADS

			Superimposed Uniform Load (psf) 3 Span Condition										
Slab REINFORCEM Depth W.W.F.	ENT					Clea	r Span (ftii	n.)					
	W.W.F.	As	5-0	5-6	6-0	6-6	7-0	7-6	8-0	8-6	9-0	9-6	10-0
	6X6-W2.1XW2.1	0.042*	84	69									
4.5	6X6-W2.9XW2.9	0.058	114	94									
(t=2.50)	4X4-W2.9XW2.9	0.087	167	138									
	6X6-W2.1XW2.1	0.042*	153	127	107	91	78					04	
5	6X6-W2.9XW2.9	0.058*	206	170	143	122	105						
(t=3.00)	4X4-W2.9XW2.9	0.087	305	252	212	180	155						
	6X6-W2.9XW2.9	0.058*	255	211	177	151	130	113	100				
5.5	4X4-W2.9XW2.9	0.087	378	313	263	224	193	168	148				
(t=3.50)	4X4-W4.0XW4.0	0.120	400	400	351	299	258	224	197				
	6X6-W2.9XW2.9	0.058*	304	251	211	180	155	135	119	105	94		
6	4X4-W2.9XW2.9	0.087	400	374	314	267	231	201	177	156	140		
(t=4.00)	4X4-W4.0XW4.0	0.120	400	400	400	359	309	270	237	210	187		
	6X6-W2.9XW2.9	0.058*	353	292	245	209	180	157	138	122	109	98	88
6.5	4X4-W2.9XW2.9	0.087*	400	400	365	311	268	234	205	182	162	146	131
(t=4.50)	4X4-W4.0XW4.0	0.120	400	400	400	400	361	315	277	245	219	196	177
	4X4-W2.9XW2.9	0.087*	400	400	400	355	306	266	234	207	185	166	150
7	4X4-W4.0XW4.0	0.120	400	400	400	400	400	360	316	280	250	224	202
(t=5.00)	4X4-W5.0XW5.0	0.150	400	400	400	400	400	400	389	344	307	276	249

* As does not meet A.C.I. criterion for temperature and shrinkage.
 Recommended conform types are based upon S.D.I. criteria and normal weight concrete.
 Superimposed loads are based upon three span conditions and A.C.I. moment coefficients.
 Load values for single span and double spans are to be reduced.
 Vulcraft's painted or galvanized form deck can be considered as permanent support in most building applications. See page 23. If uncoated form deck is used, deduct the weight of the slab from the allowable superimposed uniform loads.
 Superimposed load values shown in bold type require that mesh be draped. See page 23.

HUCOR 6

Page21|32

Chapel Hill, NC

VULCRAFT

SLAB INFORMATION

Total Slab	Theo. Concre	ete Volume	Recommended
Depth, in.	Yd ³ / 100 ft ²	ft^3 / ft^2	Welded Wire Fabric
4	0.93	0.250	6x6 - W1.4xW1.4
4 1/2	1.08	0.292	6x6 - W1.4xW1.4
5	1.23	0.333	6x6 - W1.4xW1.4
5 1/4	1.31	0.354	6x6 - W1.4xW1.4
5 1/2	1.39	0.375	6x6 - W2.1xW2.1
6	1.54	0.417	6x6 - W2.1xW2.1
6 1/4	1.62	0.438	6x6 - W2.1xW2.1
6 1/2	1.70	0.458	6x6 - W2.1xW2.1

SECTION PROPERTIES

	Design	Deck		Section				
Deck Type	Thickness	Weight	1 _p	l _n	Sp	Sn	Va	Fy
4531	in.	psf	in ⁴ /ft	in ⁴ /ft	in ³ /ft	in ³ /ft	lbs/ft	ksi
2C22	0.0295	1.62	0.324	0.321	0.263	0.266	1832	50
2C20	0.0358	1.97	0.409	0.406	0.341	0.346	2698	50
2C18	0.0474	2.61	0.559	0.558	0.495	0.504	3608	50
2C16	0.0598	3.29	0.704	0.704	0.653	0.653	3618	40

NON-COMPOSITE

ALLOWABLE UNIFORM LOAD (PSF)

TYPE	NO. OF	DESIGN	IGN CLEAR SPAN (ft-in)												
NO.	SPANS	CRITERIA	5-0	5-6	6-0	6-6	7-0	7-6	8-0	8-6	9-0	9-6	10-0	10-6	11-0
		Fb = 30,000	210	174	146	124	107	93	82	73	65	58	52	48	4
	1	Defl. = I/240	170	128	98	77	62	50	42	35	29	25	21	18	1
		Defl. = I/180	227	170	131	103	83	67	55	46	39	33	28	25	2
		Fb = 30,000	200	167	141	121	105	92	81	72.	64	58	52	47	4:
2C22	2	Defl. = I/240	408	306	236	186	149	121	100	83	70	59	51	44	31
		Defl. = I/180	544	409	315	248	198	161	133	111	93	79	68	59	5
		Fb = 30,000	243	204	173	149	129	113	100	89	80	72	65	59	5
	3	Defl. = I/240	319	240	185	145	116	95	78	65	55	47	40	34	3
		Defl. = I/180	426	320	246	194	155	126	104	87	73	62	53	46	40
		Fb = 30,000	272	225	189	161	139	121	106	94	84	75	68	62	5
	1	Defl. = 1/240	215	161	124	98	78	64	52	44	37	31	27	23	2
		Defl. = I/180	286	215	166	130	104	85	70	58	49	42	36	31	2
		Fb = 30,000	263	219	185	159	137	120	106	94	84	75	68	62	5
2C20	2	Defl. = I/240	515	387	298	235	188	153	126	105	88	75	64	56	4
		Defl. = I/180	687	516	398	313	250	204	168	140	118	100	86	74	6
		Fb = 30,000	322	269	228	196	170	149	131	117	104	94	85	77	7
	3	Defl. = I/240	403	303	233	184	147	119	98	82	69	59	50	44	3
		Defl. = I/180	538	404	311	245	196	159	131	109	92	78	67	58	5
		Fb = 30,000	395	327	274	234	202	176	154	137	122	109	99	90	8
	1	Defl. = I/240	294	221	170	134	107	87	72	60	50	43	37	32	2
		Defl. = I/180	392	294	227	178	143	116	96	80	67	57	49	42	3
		Fb = 30,000	380	317	268	230	199	174	154	136	122	110	99	90	8
2C18	2	Defl. = 1/240	706	531	409	321	257	209	172	144	121	103	88	76	6
		Defl. = I/180	942	708	545	429	343	279	230	192	161	137	118	102	8
		Fb = 30,000	464	389	330	283	246	215	190	169	151	136	123	112	10
	3	Defl. = I/240	553	415	320	252	201	164	135	113	95	81	69	60	5
		Defl. = I/180	737	554	426	335	269	218	180	150	126	107	92	80	6
		Fb = 24,000	417	345	290	247	213	185	163	144	129	116	104	95	8
	1	Defl. = I/240	370	278	214	168	135	110	90	75	63	54	46	40	3
		Defl. = I/180	493	370	285	224	180	146	120	100	85	72	62	53	4
		Fb = 24,000	392	328	277	238	206	180	159	141	126	114	103	93	8
2C16	2	Defl. = I/240	890	669	515	405	324	264	217	181	153	130	111	96	8
		Defl. = I/180	1187	892	687	540	433	352	290	242	204	173	148	128	11
		Fb = 24,000	479	401	341	293	254	223	197	175	156	141	127	116	10
	3	Defl. = 1/240	697	523	403	317	254	206	170	142	119	102	87	75	6
		Dofl = 1/190	020	609	539	123	330	275	227	180	159	135	116	100	8

Minimum exterior bearing length is 2.0 inches. Minimum exterior bearing length is 4.0 inches.

VULCRAFT GROUP

Daniel R. Hesington Chapel Hill, NC PROJECT NAME UNC Imaging Research Building ΊΠΓΚΕΊ SHEET PROJECT NO. P.O. Box 33127 · Raleigh, NC 27636-3127 SUBJECT Non Composite Steel Francing DATE 10/21/09 CHECKED BY _____ DATE ____ DATE _____ DATE ______ DATE _____ DA Phone: (919) 851-1912 • Fax: (919) 851-1918 PREPARED BY DR H Non Compose Steel Cataloc From Vulcroct Website - Louds: IL = 100 psf (Corrisors + Louvenies according to Makey's values) SD= SS SSF Th = ?. Three Spon Condition, Current Spons = 71-10" Use ZCIB (ZC CONFORM) D=63pst 1> 6" star deptn (1=9") N= 9 NUSC: 3 Span = 11-3', 145 pcf F'C = 3000 psi, Fy, 1ext= 60,000 psi Total Load = 100 + 25 + 63 = 188 75F - 2018 3 span; 8'- 6" span Fb= 30,000, 18 Ga, Allowalle Load - 190 psf > 188 psf : ck! l/240 = 18 Ga, Allerence locad : 135 pst > 100 pst - ar l/180 = 13 Ga, Allowalde Load = 180 psr > 63 1955 - 0K combined to lond of yet concrete For Beams Load - 1.2 (25 + 63) + 1.6 (100) = 265.6 PSt = 0.266 KSF Trie willing - 7'-10" = 7-833' (1) = 7.833 (0.266). 2.684 Kelf Mu= <u>wel² = 2.084(21.33)² = 118.5 k</u> VU = 2.084 (21.32) = 22.2 K LJU=2-083 KEF * Assume Fully Brace-71 33 ME-02

I.			PROJECT	AME_UNC	IRB		•	
 + [*]			PROJECT	10				OF
P.O.	Box 33127 • Raleigh,	NC 27636-3127	SUBJECT_			7	· · ·	
Phon	e: (919) 851-1912 • Fax	x: (919) 851-1918	B PREPARED	BY	DATE	_ CHECKED BY		DATE
×	3 4 5 6 7 8 1 2 3 4	5 6 7 8 1 2	3 4 5 6 7 8	8 1 2 3 4 5 6 7	8 1 2 3 4 5 6 7	8 1 2 3 4 5	6 7 8 1 2 3	4 5 6 7 8 1 2
ຜ ນາ	Solve 6	or The	T. = =	(2 ~ 24)	2 2 2 4 1 -			
2 3			^ _	384 (2	3 - 44 (1.06	5	313.8	~~ [_]
			-	4+0				
×	Iry	, WEEX		Wrin= Ei	33 ~ 7 ['	.۲۱۳ ± ټا	3 7 2.	QX
۵ ۲			375 i	`^ *				
N		- Amax	. 5/2	·087)(Z)	33) 7(1728))		
60				8 24/291	000) (375	- $ -$	893	· · · · · · · · · · · · · · · · · · ·
ی بو				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•		
*			0.89	3" 4 1-0	7 ' .: 0	ĸ		
7		1)sr 1		(x soletin	chean	<u>.</u>]	
80 more than 1 mor						· · · · · · · · · · · · · · · · · · ·	1	
4	P							
69	For a	1 Daterio						
N	4-1			3 e <0 ,				
(°) (°)		∆ , L =	L.	<u>(3).33)</u>	<u>)2)</u> = . 567	.,		
2 3 8 8 8		∆ _{TL} =	L - 743	(31.33)((31.33)(12)=1.567			
3 4 5		ک7L = ک7۲ ،۰۰۰	240 240	<u>(3).33)(</u> 275 52"	12)=1.567 (From RIS	,, 4 کر کر	1×76, I,	(: ۲۰۵۵)
		ΔTL = ΔTL	$\frac{l}{240}$	<u>(3).33)(</u> 275 52" 52'(1.5)	(From RIS	" 4, wz: ok !	1×76, I.	(: ۲۷۵۵)
		∆TL = ∆TL = ∆TL mc	2 743 4 = 1.1	(3).33)(270 32" 32' (1.50	(From RIS)	, 4, 52, 2, , 2,	7×76, I,	ر: ۲۰۵۵)
2 2 4 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4			2 2-13 1.1 1.1	$\frac{(31.33)}{275}$ $\frac{(31.33)}{275}$ $\frac{275}{52}$ $\frac{275}{52}$	12) = 1 - 567 (From RJS (7 ¹¹¹¹ - :) (6 for m	, 4, 5, 2, 3)x ! terior	1×76, I, 	< : 2+00)
2 2 4 5 6 7 8 1 2 3 4 5 6 7 8 1 1 2 3 4 5 6 7 8 1 1 2 3 4 5 6 7 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			2-1-5 2-1-5 1.5 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	(3).33)(275 52" 52'<1.50 527x7	12)=1.567 (From RIS (7 ^{41"} -: 1	", A, w2" Ok ! Herior	1×76, I. 31-2•6	(: 2+00) 5
8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2			2 243 1.3 1.3 1.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2	(3).33)(270 52" 52'<1.50 527x7	12) = 1. 567 (From RIS (7 ⁴¹⁾ - : 1	" A , US 2" She ! Herror	1×76, I. 31-2•6	< : ၃ (၁ ပ) S
0 1 0 1 7 0			2 2-13 	$\frac{(31.33)}{275}$ $\frac{(31.33)}{275}$ $\frac{275}{52}$ $\frac{275}{52}$	12)=1.567 (From RJS (7 ¹¹¹¹ -: 1	, 4, 5,2, 3)x 1 tector	1×76, I,	< : 2100)
4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			2-13 2-13 VC = 1.2 1.5 VS = V	$\frac{(31.33)}{275}$ $\frac{(31.33)}{275}$ $\frac{275}{52.1.57}$ $\frac{52.1}{5.2.7}$	12)=1.567 (From RIS (7 ⁴¹) -: 1	, 4, 5, 2, 3, k. ! teriur	7×76, I.	 < : 2 <li< td=""></li<>
1 3 4 6 7 3 4 5 7 1 2 1 2 4 5 6 7 3 4 5 7 3			2 2-4 2-4 1 2 2 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2	(3).33)(275 32" 32' 32'<1.50 327x7	12) - 1 567 (From RIS (711) - 1	, A, US 24 STK 1 Herior	7×76, I. 3 ¹⁷⁻² **	 <!--</td-->
3 3 4 8 7 4 3 4 8 6 4 5 4 6 4 8 6 4 5 4 6 4 6 4 5 6 4 7 6 4 6			2-13 2-13 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	$\frac{(31.33)}{273}$ $\frac{(31.33)}{273}$ $\frac{273}{52}$ $\frac{27}{52}$ $\frac{27}{7}$ $\frac{27}{7}$	12) - 1 567 (From RJS 57 ¹¹ - : 1 6 for m	, 4, 5.2, 374 1 Hector	1×76, I,	< : 2100) 5]
0 7 8 7 1 2 4 2 4 1 3 4 2 4			<u>e</u> 2 43 v. = 1.2 1.2 1.2	$\frac{(31.33)}{273}$ $\frac{(31.33)}{273}$ $\frac{273}{52}$ $\frac{273}{52}$ $\frac{27}{7}$ $\frac{27}{7}$	12) = 1. 567 (From RIS (7 ^{41°} - : ' C C SC M	, A, 5,2, Shc ! Herior	7×76, I. 3 ³ -2<5	<
3 4 6 7 3 4 5 6 7			2	$\frac{(31.33)}{273}$ $\frac{(31.33)}{273}$ $\frac{273}{52}$ $\frac{273}{52}$ $\frac{273}{527}$ $\frac{273}{527}$	12) - 1 567 (From RJS (y 11" - 1 '6 for m	, A, USZ SIK ! Hectur	7×76, I. 3 ¹⁷⁻² •**	x = 7 +00)
1 7 3 4 5 6 7 6 1 7 3 4 5 6 7 8 1 7 3 4 5 6 7 8 1 7 3 4 5 6 7 8 1 7 3 4 5 6 7 8 1 7 3 4 5 6 7 8 1 7 3 4 5 6 7 8 1 7 3 1 7 3 1			2-12 2-13 1.1 1.1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	$\frac{(31:33)}{273}$ $\frac{(31:33)}{273}$ $\frac{273}{52}$ $\frac{27}{77}$ $\frac{527}{77}$	12) = 1. 567 (From RIS (7.4" - 2 (6 630 m)	, A, US 24 She ! Herior	7×76, I.	<
1 2 4 5 6 7 1 2 1 2 4 5 6 7 3 4 5 7 1 2 4 5 6 7 3 4 5 7 5 1 3 4 5 6 7 3 4 5 7 5 1 3 4 5 6 7 3 4 5 7 5 1 3 4 5 7 5 7 5 7 5 1 3 4 5 7 5 7 5 7 5 1 3 4 5 7 5 7 5 7 5 1 3 4 5 7 5 7 5 7 5 1 3 4 5 7 5 7 7 7 7 1 3 4 5 7 7 7 7 7 1 3 4 5 7 7 7 7 7 1 3 4 5 7 <td></td> <td></td> <td><u>e</u> 2 - - - - - - - - - - - - - - - - - - -</td> <td>(3).33)(275 52" 52" 52'<1.50 527x7</td> <td>12) - 1 567 (From RIS (7, 11) - 1 (6 65 m)</td> <td>, A, 52 37 K Kerior</td> <td>7×76, I.</td> <td> ζ = 2 (CO) S </td>			<u>e</u> 2 - - - - - - - - - - - - - - - - - - -	(3).33)(275 52" 52" 52'<1.50 527x7	12) - 1 567 (From RIS (7, 11) - 1 (6 65 m)	, A, 52 37 K Kerior	7×76, I.	 ζ = 2 (CO) S
0 1 3 4 6 7 8 1 2 1 1 3 4 6 7 8 1 3 1 1 3 4 5 6 7 8 1 1 1 3 4 5 6 7 8 1 1 1 3 4 5 6 7 8 1 1 3 4 5 6 7 1 1 1 3 4 6 1 1 1 3 4 6 1 1 1 3 4 6 1 1 1 3 4 6 1 1 1 1 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td></td> <td></td> <td>2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td> <td>$\frac{(31:33)}{273}$ $\frac{(31:33)}{273}$ $\frac{273}{52}$ $\frac{27}{7}$ $\frac{527}{7}$</td> <td>12) = 1. 567 (From RIS (7) 11 - 2 - 1 (6 63 m</td> <td>, A , US 24 Sk: ! Heriur</td> <td>7×76, I.</td> <td> </td>			2 2 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\frac{(31:33)}{273}$ $\frac{(31:33)}{273}$ $\frac{273}{52}$ $\frac{27}{7}$ $\frac{527}{7}$	12) = 1. 567 (From RIS (7) 11 - 2 - 1 (6 63 m	, A , US 24 Sk: ! Heriur	7×76, I.	
x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x <td></td> <td></td> <td></td> <td>$\frac{(31.33)}{273}$ $\frac{(31.33)}{273}$ $\frac{273}{52}$ $\frac{27}{52}$ $\frac{27}{52}$</td> <td>12) - 1 567 (From RIS (7,11)</td> <td>, A, 52 Shc ! Herior</td> <td>1×76, I.</td> <td> ζ = 2 (CO) S </td>				$\frac{(31.33)}{273}$ $\frac{(31.33)}{273}$ $\frac{273}{52}$ $\frac{27}{52}$ $\frac{27}{52}$	12) - 1 567 (From RIS (7,11)	, A, 52 Shc ! Herior	1×76, I.	 ζ = 2 (CO) S

Chapel Hill, NC

<u>Appendix C – Option #2</u>

			<u>G</u>	<u>ravity B</u>	eam De	<u>sign</u>			
RAM II	CAM Steel v DataBase: IR Building Coo	14.00.03. B two-wa le: IBC	00 ay trial				Steel Co	10/2 ode: AISC	28/09 17:28:1 2360-05 LRF
Floor Type	e: Floor 3		Beam Nu	mber = 26					
SPAN INF	ORMATIC	N (ft): 1	-End (21.	33.23.50)	J-End (42	.67.23.50)			ì
Beam S Total E	Size (Optimi Beam Length	um) n (ft)	= 1	W10X12 21.33			Fy =	50.0 ksi	
COMPOS	ITE PROPI	ERTIES	Not Shor	ed):					
					Left		Right		
Concre	ete thickness	(in)			4.00		4.00	· · ·	
Unit w	eight concre	te (pcf)			115.00		115.00		
fc (ksi)				3.00		3.00		
Deckir	ng Orientatio	n		perpe	ndicular	per	pendicular		
Deckir	ng type		,	VULCRAF	T 2.0VL	VULCRA	FT 2.0VL		
beff (in	1) ·	=	64.00	Y bar(in)	=	12.51		
Mnf (k	tip-ft)	=	153.29	Mn (k	ip-ft)	. =	129.06		
C (kips	5)		120.61	PNA (in)	=	9.73		
Ieff (in	(4)		273.17	Itr (in-	4)		319.56		
Stud le	ngth (in)	=	4.00	Stud d	iam (in)	=	0.75		
Stud C	apacity (kip	s) $Qn =$	17.2 R	g = 1.00	Rp = 0.60)			
# of stu	uds: Max	= 21	Partial	= 14 A	ctual = 14	(0.14			
Numbe	er of Stud R	ows = 1	Percent	of Full Com	posite Acti	on = 68.14			
LINE LOA	ADS (k/ft):								
Load	Dist	DL	CDL	LL	Red%	Туре	CLL		
1	0.000	0.399	0.399	0.000	·	NonR	0.000		
	21.333	0.399	0.399	0.000			0.000		
2	0.000	0.196	0.000	0.783		NonR	0.000		
	21.333	0.196	0.000	0.783			0.000		
3	0.000	0.012	0.012	0.000		NonR	0.000		
	21.333	0.012	0.012	0.000			0.000		
SHEAR (U	Jltimate): N	Max Vu (1.2DL+1.6	6LL) = 21.1	3 kips 1.0	0Vn = 56.2	6 kips		
MOMENT	FS (Ultimat	e):							
Span	Cond	Load	lCombo	Mu	a	Lb	Cb	Phi	Phi*Mn
				kip-ft	ft	ft			kip-ft
Center	PreCmp	+ 1.4D	L	32.7	10.7	0.0	1.00	0.90	46.90
	Init DL	1.4D	DL	32.7	10.7				
	Max +	1.2D	L+1.6LL	112.7	10.7			0.90	116.16
Controlling	5	1.2E	DL+1.6LL	112.7	10.7			0.90	116.16
REACTIO	ONS (kips):								
				Left	Right				
Initial	reaction			4.38	4.38				
DL rea	action			6.47	6.47				
Max +	LL reaction			8.36	8.36				
Max +	total reactio	n (factore	d)	21.13	21.13				
DEFLECT	TIONS: (C	amber =	3/4)						
	1 1 ()						T/D	200	

Chapel Hill, NC

Gravity Beam Design

RAM Steel v14.00.03 DataBase: IRB two-w Building Code: IBC	.00 ay trial			Steel Cod	Page 2/2 10/28/09 17:28:15 e: AISC360-05 LRFD
Live load (in)	at	10.67 ft =	-0.461	L/D = 1	556
Post Comp load (in)	at	10.67 ft =	-0.576	L/D =	444
Net Total load (in)	at	10.67 ft =	-1.053	L/D =	243

Da	niel R. He	esington									Chapel Hill,	, NC
į					Gra	avity Be	am Des	sign				
		RAM Ste DataBase Building	el v14.0 : IRB tv Code: II	00.03.00 vo-way tri BC	al		·		Steel	1(Code: AIS	0/28/09 17:28 SC360-05 LR	3:15 XFD
	Floor Ty	pe: Floor (3	Bea	m Num	ber = 19						
	SPAN IN Beam Total	FORMAT n Size (Opt Beam Ler	FION (f timum) ngth (ft)	ft): I-En	d (21.33 = W2 = 31.	,0.00) J- 21X44 33	End (21.:	33,31.33)	Fy =	= 50.0 ks	i	
	СОМРО	SITE PRO	OPERT	IES (Not	Shored):						
	Conc Unit	rete thickn weight cor	ess (in) acrete (p	ocf)		1	Left 4.00 115.00		Righ 4.00 115.00	t D D		
	fc (k	si)	ŭ	·			3.00		3.0	0		
	Deck	ing Orient	ation			р	arallel		paralle	1		
	Deck beff (ing type (in)		9	VL 4.00	JLCRAFT Y bar(in	2.0VL	VULCR =	AFT 2.0VI 20.2	5		
	Mni C (lei	(KIP-IT)		81	2.18	Mn (Kip	-n)	-	/45.02	2		
		ps) in (1)		220	2.07	Itr (in 4))		20.30	5 7		
	Stud	length (in)	_	239	4.00	Stud dia	m (in)	_	2121.9	, 5		
	Stud	Canacity (kins) ($n = 17^{9}$	7 Ro	= 1.00 I	Rn = 0.7	5	.0.7.			
	# of s	studs: F	ull =	74 Pa	artial = 5	0 Actu	al = 50					
	Num	ber of Stud	l Rows	=1 Pe	rcent of	Full Compo	osite Actio	n = 68.01				
	DOINT		• 、									
	POINT I Dict	JUADS (K	ips):	Dedi I	Ded0/	NonDII	Stor I I	Ded0/	PoofI I	Ded0/	CU	
	7 833	6 47	4 38		0.0	NUIIREE 8 36			0.00	Snow	0.00	
	7 833	6.47	4.38	0.00	0.0	8 36	0.00	0.0	0.00	Snow	0.00	
	15 667	6.47	4.30	0.00	0.0	8 36	0.00	0.0	0.00	Snow	0.00	
	15.667	6 47	4 38	0.00	0.0	8.36	0.00	0.0	0.00	Snow	0.00	
	23.500	6.47	4.38	0.00	0.0	8.36	0.00	0.0	0.00	Snow	0.00	
	23.500	6.47	4.38	0.00	0.0	8.36	0.00	0.0	0.00	Snow	0.00	
			4).							•		
	LINELC	Dist	ц: Т) זר	וחי	TT	Red%	Type	CU			
	1	0.000	0.0	44 0	044	0.000		NonR	0.000			
	•	31.333	0.0	44 0	.044	0.000			0.000			\sim
	SHEAD	(Illtimate)	• May	Vn (1 2D	I +1 6I 1	() = 64.23	kine 10	0Vn = 21	7 35 kine			
	SILAN	(Unimate)	• IVIAX	v u (1.2D		L) - 04.23	кірэ 1.0	0 V II – 21	7.55 Kips			
	MOMEN	TS (Ultin	nate):	. 10			0		CI		D1 (43) (
	Span	Cond		LoadCon	100	Mu	a	Lb	Cb	Phi	Phi*Mn	
	Conton	Dura		1 401		K1p-ft	II 15 7	π 7 0	1 1 1	0.00	Kip-It	
	Center	Preci	mp+	1.4DL		199.8	15.7	7.8	1.11	0.90	333.83	
		Mov.	1L +	1.4DL	61.1	199.0	15.7			0.00	670 51	
	Controllin	IVIAX ·	r.	1.2DL+1	6LL	668 7	15.7			0.90	670.51	
				1,21,21,1		000.7	10.7			0.70	070.01	
	REACTI	UNS (kip	s):			oft D	iah <i>t</i>					
	Initio	Ireaction			1 1 (1^{\prime}	1511 3 84					
		eaction			1.).11 7/	0.11					
	DLR	caction			20		0.11					

Chapel Hill, NC

Daniel R. Hesington

Gravity Beam Design

		Gravity	Beam	Design			
RAM Steel v14.00.03. DataBase: IRB two-wa Building Code: IBC	00 ay trial				Steel Co	10/28/0 de: AISC360	Page 2/2 9 17:28:15)-05 LRFD
		Left	Right	•			· · · · · · · · · · · · · · · · · · ·
Max +LL reaction		25.07	25.07				
Max +total reaction (factore	1)	64.23	64.23				
DEFLECTIONS: (Camber = 3	8/4)						
Initial load (in)	at	15.67 f	t =	-0.982	L/D =	383	
Live load (in)	at	15.67 f	t =	-0.632	L/D =	595	
Post Comp load (in)	at	15.67 f	t =	-0.790	L/D =	476	
Net Total load (in)	at	15.67 f	t =	-1.022	L/D =	368	

Chapel Hill, NC

<u>Appendix D – Option #3</u>

Key 444 – Safe superimposed service load, psf 0.1 – Estimated camber at erection, in. 0.2 – Estimated long-time camber, in.

,	Strand Pattern Designation 76-S	HOLLOW-CORE 4'-0" x 6"	S Untop	ection Pr	operties Topped
	* * *	Normal Weight Concrete	A =	187 in. ²	283 in. ²
	S = straight	41.0"	=	763 in.4	1,640 in. ⁴
	L Diameter of strand in 16ths	4-0	y _b =	3.00 in.	4.14 in.
	No. of Strand (7)		y _t =	3.00 in.	3.86 in.
	Safe loads shown include dead load of 10		S _b =	254 in. ³	396 in. ³
	psf for untopped members and 15 psf for	L[0.0.0.0.0.0.0.0] 6"	$S_t =$	254 in. ³	425 in. ³
	topped members. Remainder is live load.		wt =	195 plf	295 plf
	dead load but do not include live load.	Ť	DL =	49 psf	74 psf
		f' = 5,000 psi	V/S=	1.73 in.	
	Capacity of sections of other configurations are similar. For precise values, see local hollow-core manufacturer.	$f_{pu} = 270,000 \text{ psi}$			

- 4	HCS	
	1100	

Table of safe superimposed service load (psf) and cambers (in.)

No Topping

Strand										Sp	oan, f	t									
Designation Code	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
66-S	444 0.1	382 0.2	333 0.2	282 0.2	238 0.2	203 0.2	175 0.2	151 0.2	131 0.2	114 0.2	100 0.2	88 0.2	77 0.1	68 0.0	59 0.1 0.5	52 0.2	46 0.4 0.9	40 0.5 1.2	33 0.7 1.5	28 1.9	
76-S	0.2	445 0.2 0.3	388 0.2 0.3	328 0.2 0.3	278 0.3 0.3	238 .0.3 0.3	205 0.3 0.3	178 0.3 0.3	155 0.3 0.3	136 0.3 0.3	120 0.3 0.2	105 0.3 0.1	93 0.3 0.0	82 0.2 -0.1	73 0.1 -0.2	65 0.1 0.4	57 0.0 0.7	49 0.1 0.9	42 0.3 1.2	36 -0.4 -1.6	31 -0.6 -2.0
96-S		466 0.3 0.3	421 0.3 0.4	386 0.3 0.4	338 0.4 0.5	292 0.4 0.5	263 0.4 0.5	229 0.5 0.6	201 0.5 0.6	177 0.5 0.6	157 0.5 0.5	139 0.5 0.5	124 0.5 0.4	110 0.5 0.3	99 0.5 0.2	88 0.4 0.1	78 0.3 0.1	68 0.3 –0.3	60 0.1 –0.6	53 0.0 0.9	46 0.1 1.3
87-S		478 0.3 0.4	433 0.4 0.5	398 0.4 0.5	362 0.5 0.6	322 0.5 0.7	290 0.6 0.7	264 0.6 0.7	240 0.7 0.8	212 0.7 0.8	188 0.7 0.8	167 0.7 0.8	149 0.8 0.7	134 0.8 0.7	119 0.7 0.6	107 ^0.7 0.5	95 0.7 0.3	85 0.6 0.2	76 0.5 0.0	68 0.4 0.3	60 0.3 0.6
97-S		490 0.4 0.5	445 0.4 0.6	407 0.5 0.6	374 0.5 0.7	346 0.6 0.8	311 0.7 0.8	276 0.7 0.9	242 0.8 0.9	220 0.8 1.0	203 0.9 1.0	186 0.9 1.0	166 0.9 1.0	148 0.9 0.9	133 1.0 0.9	119 0.9 0.8	107 0.9 0.7	96 0.9 0.5	86 0.8 0.3	78 0.7 0.1	70 0.6 0.2

				-	
- 4	4H0	C6	+	2	

2 in. Normal Weight Topping

Table of safe superimposed service load (psf) and cambers (in.)

Strand									S	pan, f	t								
Designation Code	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
	470	396	335	285	244	210	182	158	136	113	93	75	59	46	34				
66-S	0.2	0.2	0.2	0.2	0.2	02	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	-0.2				
	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.1	0.2	-0.3	-0.5	-0.7	-0.9	-1.2				
		461	391	334	287	248	216	188	163	137	115	95	78	63	50	38	27		
76-S		0.2	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.2	0.1	0.1	0.0	-0.1	-0.3		
		0.2	0.2	0.2	0.2	0.2	0.2	0.1	0.1	0.0	-0.2	-0.3	-0.5	-0.7	-0.9	-1.2	-1.5		
			473	424	367	319	279	245	216	186	160	137	116	98	82	68	55	43	33
96-S			0.4	0.4	0.4	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.4	0.3	0.3	0.1	0.0	-0.1
			0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.2	0.1	-0.1	-0.3	-0.5	-0.7	-1.0	1.4	1.7
			485	446	415	377	331	292	258	224	195	169	147	127	109	94	80	67	55
87-S			0.5	0.5	0.6	0.6	0.7	0.7	0.7	0.7	0.8	0.8	0.7	0.7	0.7	0.6	0.5	0.4	0.3
0.00			0.5	0.5	0.5	0.6	0.6	0.6	0.5	0.5	0.4	0.4	0.2	0.1	-0.1	-0.3	0.5	-0.8	-1.2
			494	455	421	394	357	327	288	251	219	192	168	146	127	110	95	82	70
97-5			0.5	0.6	0.7	0.7	0.8	0.8	0.9	0.9	0.9	0.9	1.0	0.9	0.9	0.9	0.8	0.7	0.6
97-S			0.6	0.6	0.7	0.7	0.7	0.7	0.7	0.7	0.6	0.6	0.5	0.4	0.2	0.0	0.2	-0.5	0.8

Strength is based on strain compatibility; bottom tension is limited to $7.5\sqrt{f'_c}$; see pages 2–7 through 2–10 for explanation.

PCI Design Handbook/Sixth Edition First Printing/CD-ROM Edition 2–31

Daniel R. Hesington Chapel Hill, NC PROJECT NAME Unit Imaging Research Building 1ULKEY PROJECT NO P.O. Box 33127 · Raleigh, NC 27636-3127 SUBJECT Hullow Core Pearst on Skel Phone: (919) 851-1912 • Fax: (919) 851-1918 PREPARED BY DR H DATE 0/2/09 CHECKED BY Hollow Cure Precust on Seel Load: Le 100 Pof SDL = 25 75F D = 15 PSF (From PCI Hendbook for topped members 140 pst Superimposed Service Load Try 4'-0" x 6" Nuxe up 2" topping f'c = 5000 psi span z'' + y = 2z' (simplified) fci = 2500 psi fpu = 270,000 psi 96-5 -> 160 pst >140 pst .. ok 0.5" comber @ erection 0.2" comber (long period) 9 strands @ (16" & - straight Sex LST = 74 PSF Gir ders Lond = 1.2 (25+74) + 1.6 (100) = 278.8 PSF = 0.279 KSF Mu une? 0279(21.33)(3)33)2 730.2 K Try WZY X 76 Smn= 750 K > 730 K = 0K DIL (allowable) = -(36 - 31.33(12) = (-044" ALL = 5 wel 4 = 5 (100)(2133)(/1000) (3.35)4/1728) 384EI = 384(29,000)(2100) <u>МЦ = 0.76</u>" 0.76" Z 1.044" -: OK ME-02

